Chem. Ber. 117, 2863-2874 (1984)

Charakterisierung der dimeren Diorgano(organophosphinoyloxy)borane in Lösung und in festem Zustand¹⁾

Ludwik Synoradzki, Richard Mynott²⁾, Jiang Anbei³⁾, Carl Krüger³⁾, Yi-hung Tsay³⁾ und Roland Köster *

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim an der Ruhr 1

Eingegangen am 7. November 1983

Die unter $\textcircled{P} - O - B \xrightarrow{\Theta}$ -Koordination im Monomeren/Dimeren-Gleichgewicht stehenden Diorgano(phenylphosphinoyloxy)borane R₂BOP(O)C₆H₅R' [1: R₂ = (C₂H₅)₂, R' = C₆H₅; 2: R₂ = C₈H₁₄ = 1,5-CyclooctandiyI, R' = C₆H₅; 3: R₂ = (C₂H₅)₂, R' = H; 4: R₂ = C₈H₁₄, R' = H] werden in Lösung mittels der NMR-Spektren (¹H, ¹¹B, ¹³C, ³¹P) charakterisiert. (3)₂ und (4)₂ treten als *cis/trans*-Isomere auf. In festem Zustand bildet (1)₂ einen (POBO)₂-Achtring mit Wannen-Struktur, während das chirale (4)₂ als (POBO)₂-Achtring mit Halbsessel-Konformation vorliegt (Röntgenstrukturanalysen).

Characterization of the Dimeric Diorgano(organophosphinoyloxy)boranes in Solution and in Solid State¹⁾

The diorgano(phenylphosphinoyloxy)boranes $R_2BOP(O)C_6H_5R'$ [1: $R_2 = (C_2H_5)_2$, $R' = C_6H_5$; 2: $R_2 = C_8H_{14} = 1,5$ -cyclooctanediyl, $R' = C_6H_5$; 3: $R_2 = (C_2H_5)_2$, R' = H; 4: $R_2 = C_8H_{14}$, R' = H] are characterized using NMR spectra (¹H, ¹¹B, ¹³C, ³¹P). In solution 1 – 4 exhibit monomer/dimer equilibria as a result of $\stackrel{@}{=}P - O - B \stackrel{\Theta}{=}$ coordination. (3)₂ and (4)₂ occur as *cis/trans* isomers. In the solid state the (POBO)₂ eight-membered ring of (1)₂ has a boat conformation, whereas that of the chiral (4)₂ has a half-chair conformation (X-ray structure analyses).

Die in der voranstehenden Arbeit¹⁾ nach drei verschiedenen Methoden hergestellten dimeren Diorgano(phenylphosphinoyloxy)borane 1-4 werden in Lösung mit Hilfe der NMR-Spektren (¹H, ¹¹B, ¹³C, ³¹P)²⁾ charakterisiert. Die Molekülstrukturen von (1)₂ und (4)₂ sind durch Röntgenstrukturanalysen³⁾ bestimmt worden.

© Verlag Chemie GmbH, D-6940 Weinheim, 1984 0009 – 2940/84/0909 – 2863 \$ 02.50/0

Charakterisierung der Diorgano(phosphinoyloxy)borane 1-4 in Lösung

Kryoskopische Messungen ergaben, daß 1 in Benzol mit der ≈ 1.25 fachen und 2-4 mit der doppelten Molmasse des Monomeren gelöst sind. Auch aus den NMR-Daten (vgl. Tab. 1-3) kann auf die Assoziation geschlossen werden.

Verbin- dung ^{b)}	Lö: mi Art	sungs- ittel ^{c)} ca. Konz. (%)	H ²	$H^3 + H^4$	δ ¹ H ^{d)} H ⁵ [¹ J _{PH} (Hz)]	H6	$H^7 + H^8$
1	B P	9 12	7.80 (m) 8.27 (m)	7.00 (m) 7.38 (m)	-	0.82 (m) ^{f)} 0.87 sh	$1.18 (m)^{e}$ - 0.92 (s) -
2	С	10	7.73 (m)	7.42 (m)	-	0.70 br	1.62 br
3 bei 55°C	С	20	7.79 (m)	7.54 (m)	7.76 (d) [585]	0.54 (m) ^{f)}	0.82 (m) ^{e)}
bei 0°C	С	20			7.80 (d) [582] 7.75 (d) [590]		
4	Т	1.5	7.75 (m)	≈6.91 (m)	7.66 (d) [583] 7.59 (d) [593]	1.14 br 1.29 br 0.84 br	2.05 br
400-MHz- Spektrum	Т	1.5	7.81 (m) ^{g)} 7.70 (m) ^{h)}	≈ 7.00 (m)	7.62 (d) [574.5] 7.57 (d) [585.9]	1.17 br 1.33 br 0.82 br	

Tab. 1. ¹H-NMR-Daten der Diorgano(phenylphosphinoyloxy)borane 1-4^a) bei ≈20°C in verschiedenen Lösungsmitteln

^{a)} Messungen bei 80 MHz mit Ausnahme von (4)₂ (letzte Meßreihe). – ^{b)} Numerierung der H-Atome gemäß I.

$$I \quad H^4 \xrightarrow{H^3}_{H^5} \begin{array}{c} H^6 \\ \mu^6 \\ \mu^$$

^{c)} B = [D₆]Benzol; P = [D₅]Pyridin; C = [D]Chloroform; T = [D₈]Toluol. $-^{d_1}$ br = breit; sh = Schulter. $-^{c_1}$ 3-Linien-Multiplett. $-^{f_1}$ 4-Linien-Multiplett. $-^{g_2}$ 4-Linien-Multiplett ($^{3}J_{PCCH}$ = 14.4 Hz). $-^{h_1}$ 4-Linien-Multiplett ($^{3}J_{PCCH}$ = 14.6 Hz).

Die ¹¹B-NMR-Spektren (vgl. Tab. 2) der in Chloroform oder Arenen gelösten Borane 1 – 4 verdeutlichen deren Eigenassoziation. Man findet zwischen 11 und 14 ppm jeweils relativ breite Signale ($\omega_{1/2} \leq 900$ Hz) des vierfach koordinierten Bor-Atoms⁴⁾. In Pyridin sind diese Signale um etwa 4 ppm hochfeldverschoben und schmaler ($\omega_{1/2} \approx$ 600 Hz). Die Signale von (3)₂ und (4)₂ sind mit $\omega_{1/2} \approx$ 600 Hz schmaler als die von (1)₂ und (2)₂ ($\omega_{1/2} \approx 900$ Hz). Im ¹¹B-NMR-Spektrum von (1)₂ in Toluol tritt um $\approx 20^{\circ}$ C bei $\delta = 53 - 54$ ppm ein Signal ($\omega_{1/2} \approx 200$ Hz) mit geringer (<25%) Intensität auf, das einer nicht assoziierten Diorganoboryloxy-Gruppierung zugeordnet wird.

In den ¹H-entkoppelten ³¹P-NMR-Spektren (vgl. Tab. 2)⁵⁾ beobachtet man für (1)₂ und (2)₂ jeweils ein scharfes Singulett um $\delta \approx 23$ (Aren, Chloroform), das in Pyridin

	Vert dur N	bin- ng r.	(udd)	8 ¹¹ B	ω _{1/2} [Hz]		8 ³¹ P c (ppm	a c	Lösungsn [Konzent	nittel ^{d)} ration]		
	1		11 (sh 54 14 (sh 53		1050		23.5 13.0		C [10	[%]		
			12 (sh 53	~~	950		3.1		B [110	[%]		
			9.0		280		17.6		P [13	0/0]		
	7		13.5		906		24.7		T [10	9/0] 9/0]		
	•		13.0		580		(5.1c)		C [20	%o]		
	4		13.3		650		15.5 ≈70% 15.1 ≈30%	60 J) (0 E)	C [15	[%		
				Tab. 3. ¹	³ C-NMR-E	aten vor	n 1-4 bei	40°C				
	ر۔		ن ⁷	~	C,		C		<u>ب</u> ر	- <u>5</u> کو	<u>ر</u>	Konzentration
	(mdd)	J _{PC} (Hz)	(mqq)	J _{PC} (Hz)	(udd)	J _{PC} (Hz)	(udd)	J _{PC} (Hz)	(mdd)	(mqq)	(mqq)	in CDCl ₃ (%)
	132.3	149.6	132.0	11.0	128.4	13.8	132.3	1.8	14.5 ± 0.5	9.4		10
	131.9	150.1	132.1	11.5	128.5	14.2	132.4	1.8	25.5 ± 0.5	32.1	24.5	10
	128.3	153.7	131.6	11.9	129.1	14.7	133.7	2.3	13.9 ± 0.5	9.2		20
0°C	{ 127.3 { (127.8) ^{a)}	154.7	131.7 131.5	11.9	129.1	14.7	133.8	2.3	13.6 ± 0.1	9.4		{ (trans) { (cis)
	127.7 (128.2) ^{a)}	157.0	131.8 131.6	11.9 12.4	129.3	15.1	133.9	3.2	E.	12.0; 32.2	24.6	{ 12 (trans) { (cis)
	·				,							

Chem. Ber. 117 (1984)

a) Tieffeldsignal überlagert; ${}^{1}J_{PC}$ (trans-Isomeres) $\approx {}^{1}J_{PC}$ (cis-Isomeres).

um 5-6 ppm hochfeldverschoben wird. Für $(3)_2$ und $(4)_2$ treten dagegen die ¹H-entkoppelten ³¹P-NMR-Signale bei ≈ 15 ppm als zwei Singuletts im Verhältnis 3:1 $(-50 \,^{\circ}\text{C}, \text{CDCl}_3)$ auf, was auf eine *cis/trans*-Isomerie in Lösung zurückzuführen ist.

In den ¹³C-NMR- (Tab. 3) und ¹H-NMR-Spektren (Tab. 1) für (3)₂ und (4)₂ werden ebenfalls zwei Isomere beobachtet: z. B. die Signale der direkt an P-Atome gebundenen Protonen (H_P). (3)₂ und (4)₂ spalten in Toluol bei 0 und 20 °C zu zwei Dubletts $\delta_{\rm H} =$ 7.6 - 7.8 (J_{PH} = 582 - 593 Hz) auf, die bei 80 MHz für (3)₂ bei 20 °C und für (4)₂ bei ≈105 °C koaleszieren.

Spektroskopische Untersuchungen der Einzelverbindungen

(Diphenylphosphinoyloxy)diethylboran $(1)^{6}$: Das feste cyclische Dimere von 1 (Abb. 1) löst sich in Benzol aufgrund der kryoskopisch gemessenen Molmasse (358) (Monomer = 286) unter Dissoziation. Trotzdem sind die ¹H-, ¹¹B- und ³¹P-NMR-Spektren von 1 in Benzol, Toluol, Tetrachlormethan, Chloroform, Tetrahydrofuran oder Dimethylsulfoxid einander sehr ähnlich.

Im ¹¹B-NMR-Spektrum tritt bei $\delta \approx 13$ ein breites Signal ($\omega_{1/2} \approx 900$ Hz) mit kleiner Schulter ($\delta = 53$, $\omega_{1/2} \approx 200$ Hz) auf, die bei ca. + 75 °C verschwindet (Tab. 2). Kleine Anteile von nicht assoziierten Diethylboryloxy-Resten mit dreifach koordiniertem Bor-Atom sind offenbar vorhanden. Die Konzentration der Lösung hat keinen Einfluß auf die Lage und die Intensität der ¹¹B-NMR-Signale. Das deutlich schmalere ($\omega_{1/2} = 580$ Hz), hochfeldverschobene ¹¹B-NMR-Signal von 1 in Pyridin bei $\delta = 9$ (vgl. Tab. 2) hat allerdings keine Tieffeld-Schulter. Unter Einbeziehen der Lage des Hauptsignals im ¹¹B-NMR-Spektrum sowie der kryoskopisch ermittelten Molmasse ist zu schließen, daß es auch intramolekulare Wechselwirkungen zwischen dem Sauerstoff-Atom der P = O-Gruppe und dem Bor-Atom unter Ausbilden eines (POBO)-Vierrings gemäß (1)₂ $\neq 2$ 1 gibt.

1,5-Cyclooctandiyl(diphenylphosphinoyloxy)boran (2)⁶⁾ löst sich in Benzol als cyclisches Dimeres (2)₂ (gef. kryoskopische Molmasse 680¹⁾; ber. Monomeres 338). Im ¹¹B-NMR-Spektrum (Tab. 2) beobachtet man nur ein breites Signal ($\delta = 13.5$; $\omega_{1/2} =$ 900 Hz). Offensichtlich liegt in Benzol ausschließlich ein dimeres 2 mit tetrakoordiniertem Bor-Atom vor.

Die ¹H- und ³¹P-NMR-Spektren von $(2)_2$ (Tab. 1 und 2) weisen auf eine einheitliche Verbindung hin.

Diethyl(phenylphosphinoyloxy)boran (3)⁶: Für 3 findet man in Benzol kryoskopisch die Molmasse 416 (Monomeres 210)¹). Beim Dimerisieren bilden sich *cis/trans*-Isomere (vgl. Fußnote^{e)} in Tab. 2): Im ¹H-entkoppelten ³¹P-NMR-Spektrum von (3)₂ treten bei -20° C zwei scharfe Singuletts ($\delta = 15.3$, 15.2) auf, die bereits bei $\approx +20^{\circ}$ C koales-

zieren ($\delta = 15.1$). Im ¹H-gekoppelten Spektrum tritt ein Dublett von Tripletts ($\delta = 15.1$, ¹ $J_{PH} = 578.6$, ³ $J_{PCCH} \cong 13.5$ Hz) (Tab. 2) auf.

Im 80-MHz-¹H-NMR-Spektrum von *cis/trans*-(**3**)₂ werden bei 0 °C zwei Dubletts von H_P-Atomen: $\delta_{trans} = 7.80 ({}^{1}J_{PH} = 582 \text{ Hz}) \text{ und } \delta_{cis} = 7.75 ({}^{1}J_{PH} = 590 \text{ Hz}) \text{ im Verhält-}$ nis 3:1 (Tab. 1) beobachtet. Die Tieffeldresonanzen der Dubletts werden nicht aufgelöst ($\delta^{1}H = 11.43$), die Hochfeldresonanzen liegen ≈8 Hz voneinander entfernt und beginnen bereits bei ≈ + 10 °C zu koaleszieren. Bei + 55 °C liegt nur noch ein Dublett ($\delta = 7.76 \text{ mit } {}^{1}J_{PH} = 585 \text{ Hz}$) vor. Die 13 C-NMR-Spektren weisen ebenfalls auf zwei (*cis/trans*)-isomere (**3**)₂ hin. Bei - 20 °C sind die Signale der Phenylgruppen der *cis*und *trans*-Verbindungen getrennt, aber bei + 20 °C werden infolge des *cis/trans*-Austauschs die jeweils gemittelten Signale beobachtet (Tab. 3).

1,5-Cyclooctandiyl(phenylphosphinoyloxy)boran (4)⁶: Die in Benzol gelöste Verbindung (4)₂ (gef. Molmasse 526; ber. 262) (Abb. 2) hat bei $\approx +20$ °C im ¹H-entkoppelten ³¹P-NMR-Spektrum zwei scharfe Singuletts, die dem *trans*-Isomeren ($\delta = 15.5$) und dem *cis*-Isomeren ($\delta = 15.1$) zuzuordnen sind (Tab. 2). Im ¹H-gekoppelten ³¹P-NMR-Spektrum sind bei -55 °C zwei Dubletts von Tripletts zu erkennen: $\delta_{trans} = 15.9$ (¹J_{PH} = 576 Hz) und $\delta_{cis} = 14.1$ (¹J_{PH} = 574, ³J_{PCCH} = 14 Hz).

Im ¹³C-NMR-Spektrum von (4)₂ in [D]Chloroform werden die Signale von zwei unterschiedlichen Phenylringen beobachtet (Tab. 3). Bis $\approx +75$ °C treten im 80-MHz-¹H-NMR-Spektrum zwei Dubletts bei $\delta_{trans} = 7.66$ (¹J_{PH} = 583 Hz) und $\delta_{cis} = 7.59$ (¹J_{PH} = 593 Hz) auf (Tab. 1). Bei Temperatursteigerung verschiebt sich das *trans/cis*-Verhältnis zugunsten der *cis*-Verbindung. Es beträgt bei -50 °C 3:1 und bei +75 °C 2:3.

Das 400-MHz-¹H-NMR-Spektrum von (4)₂ (Tab. 1) erlaubt neben der Zuordnung der H_P-Atome bei $\delta_{trans} = 7.62$ (¹J_{PH} = 574.5 Hz) und $\delta_{cis} = 7.57$ (¹J_{PH} = 585.9 Hz) auch die Unterscheidung der o-H_{Phenyl}-Atome von *trans/cis*-isomerem (4)₂ bei $\delta_{trans} =$ 7.81 (³J_{PCCH} = 14.4 Hz) und $\delta_{cis} = 7.70$ (³J_{PCCH} = 14.6 Hz). Außerdem haben die H-Atome am α -C-Atom des 1,5-Cyclooctandiyl-Rings im zentrosymmetrischen *trans*-(4)₂ ein Signal bei $\delta_{trans} = 1.17$. Bei *cis*-(4)₂ sind die α -H-Atome des Cyclooctan-Rings auf zwei Signalgruppen bei $\delta_{cis/cis} = 0.82$ und $\delta_{cis/trans} = 1.33$ verteilt.

Charakterisierung von festem (1)₂ und (4)₂

Die IR-Spektren von 1 - 4 im KBr-Preßling deuten auf (POBO)₂-Assoziate hin¹). Die Röntgenstrukturanalysen³) von (1)₂ (Abb. 1) und (4)₂ (Abb. 2) zeichnen sich durch kristallographisch bedingte Symmetrieelemente aus.

l'a	b. 4	ł.	Dai	ten	zur	K	rista	19	stri	uk	tι	ıra	na	iyse	von	(I,)2	2
-----	------	----	-----	-----	-----	---	-------	----	------	----	----	-----	----	------	-----	---	----	----	---

$a = 18.826(3) \text{ \AA}$ $b = 21.393(2) \text{ \AA}$ $c = 9.289(1) \text{ \AA}$ $\alpha = 90.0^{\circ}$ $\beta = 90.0^{\circ}$ $\gamma = 90.0^{\circ}$ $V = 3741.23 \text{ \AA}^{3}$ $d_{c} = 1.23 \text{ gcm}^{-3} \text{ (mit fehlge-ordnetem Kristall-Chlorofor)}$ Z = 4	Raumgruppe: Pnna (Nr. 52) Gesamtzahl Reflexe 4475 davon beobachtet 2031 ($I > 2\sigma(I)$) verfeinerte Parameter 204 R = 0.075 $R_w = 0.071$ Wellenlänge = 0.71069Å m)

Abb. 1. Röntgenographisch bestimmte Molekülstruktur von (Diphenylphosphinoyloxy)
diethylboran ${\rm (1)}_2$

Bindungsabstä	nde in Å		
P - C1	1.799(5)	C1 - C2	1.393(7)
P - C21	1.790(5)	C2 - C3	1.378(8)
P - 01	1.528(3)	C3 - C4	1.376(9)
01 - B	1.561(6)	C4 - C5	1.376(9)
B - C31	1.587(8)	C5 - C6	1.388(8)
C31 - C32	1.527(8)	C6 - C1	1.402(6)
B - C41	1.602(8)	C21 - C22	1.386(7)
C41 - C42	1.526(9)	C22 - C23	1.373(8)
B - 02*	1.546(6)	C23 - C24	1.36(1)
02 - P	1.514(3)	C24 ~ C25	1.37(1)
		C25 - C26	1.378(9)
		C26 - C21	1.391(7)
Bindungswinke	l in ^o		
C1 - P - C21	108.4(2)	P - C21 - C22	120.5(4)
C1 - P - O1	104.1(2)	C21 - C22 - C23	120.1(5)
C1 - P - O2	111.8(2)	C22 - C23 - C24	121.3(6)
C21 - P - 01	110.7(2)	C23 - C24 - C25	119.4(6)
C21 - P - O2	105.2(2)	C24 - C25 - C26	120.3(6)
01 - P - 02	116.5(2)	C25 - C26 - C21	120.4(5)
P - O1 - B	135.7(3)	C26 - C21 - C22	118.4(5)
01 - B - C31	111.7(4)	C26 - C21 - P	121.1(4)
B - C31 - C32	112,7(4)	P - C1 - C2	121.9(4)
01 - B - 02★	104.5(4)	C1 - C2 - C3	119.8(5)
01 - B - C41	105.6(4)	C2 - C3 - C4	120.8(5)
B - C41 - C42	114.3(4)	C3 - C4 - C5	120.2(5)
C31 - B - C41	118.3(4)	C4 - C5 - C6	120.1(5)
C31 - B - 02*	107.5(4)	C5 - C6 - C1	119.9(5)
C41 - B - O2★	108.4(4)	C6 - C1 - C2	119.2(4)
B* - 02 - P	136.4(3)	C6 - C1 - P	118.9(4)

Tab. 5.	Bindungsabständ	le und	-winkel	in	(1)
					N-7 2

Chem. Ber. 117 (1984)

ATON	x	Y	Z	U(1,1)	U(2,2)	U(3,3)	U(1,2)	U(1,3)	U(2,3)
P	1.0146(1)	0.1802(1)	0.3713(1)	0.050	0.044	0.032	-0.005	-0.003	0.004
В	1.0545(3)	0.1939(2)	0.0759(5)	0.066	0.052	0.038	0.001	0.004	0.000
01	1.0056(1)	0.1802(1)	0.2079(2)	0.061	0.054	0.034	-0.007	-0.002	0.001
02	1.0560(1)	0.2341(1)	0.4352(3)	0.059	0.047	0.043	-0.008	-0.009	0.003
C 1	0.9251(2)	0.1773(2)	0.4390(4)	0.053	0.041	0.043	0.001	0.001	0.003
C 2	0.8667(2)	0.1740(2)	0.3474(5)	0.059	0.082	0.047	0.005	-0.005	0.004
C 3	0.7991(2)	0.1714(3)	0.4043(6)	0.045	0.126	0.079	0.009	-0.009	0.009
C 4	0.7886(3)	0.1708(3)	0.5508(7)	0.058	0.113	0.080	0.003	0.020	0.007
C 5	0.8457(3)	0.1740(2)	0.6429(5)	0.078	0.097	0.050	-0.005	0.020	0.001
C 6	0.9142(2)	0.1770(2)	0.5882(4)	0.067	0.083	0.038	-0.005	-0.001	0.004
C21	1.0601(2)	0.1112(2)	0.4295(5)	0.048	0.050	0.041	-0.003	0.005	0.005
C22	1.0497(2)	0.0549(2)	0.3592(6)	0.086	0.053	0.064	-0.003	-0.015	-0.001
C23	1.0847(4)	0.0022(2)	0.4047(7)	0.138	0.043	0.086	0.014	0.001	-0.002
C24	1.1288(3)	0.0036(3)	0.5205(8)	0.103	0.061	0.106	0.025	-0.008	0.025
C25	1.1385(3)	0.0587(3)	0.5937(6)	0.076	0.081	0.094	0.009	-0.031	0.022
C26	1.1047(2)	0.1123(2)	0.5489(5)	0.069	0.058	0.959	0.003	-0.014	-0.001
C31	1.1335(2)	0.1709(2)	0.1032(5)	0.070	0.054	0.061	0.009	0.007	-0.001
C 32	1.1820(3)	0.1824(2)	-0.0257(7)	0.072	0.087	0.110	0.005	0.024	-0.009
C41	1.0129(3)	0.1669(2)	-0.0611(5)	0.092	0.080	0.038	-0.007	0.000	-0.010
C42	1.0071(4)	0.0958(3)	-0.0644(6)	0.162	0.087	0.071	-0.036	-0.022	-0.030
с	0.234(1)	0.0176(9)	1.038(2)	0.099	0.141	C.209	0.068	-0.051	-0.049
CL	0.3097(2)	0.0353(1)	0.9381(4)	0.220	0.218	C.336	·0.018	0.122	-0.025
C L1	0.2500	0.0000	1.1952(5)	0.322	0.547	0.107	0.072	0.000	0.000

Tab. 6. Atomkoordinaten und thermische Parameter von $(1)_2$

In $(1)_2$ verläuft eine zweizählige Symmetrieachse (Raumgruppe *Pnna*, Z = 4) senkrecht durch den (POBO)₂-Achtring, der (vgl. Abb. 3) im Molekülverband des Kristalls in der Wannenform vorliegt. Phosphor- und Bor-Atome haben dabei tetraedrische Geometrie. Die wichtigsten Bindungsabstände sind der Abb. 1 zu entnehmen, weitere Daten enthalten die Tab. 4-6.

(4)₂ hat im festen Zustand im Gegensatz zu (1)₂ als Symmetrieelement eine Spiegelebene (Raumgruppe *Pnma, Z* = 4), die durch die Atome C12, C9, P1...P2, C13, C16 verläuft. Der Rumpf des Moleküls ist wie bei (1)₂ ein (POBO)₂-Achtring, der jedoch in einer Halbsessel-Konformation (Abb. 3) vorliegt. In Übereinstimmung mit dem vorgegebenen Symmetrieelement stehen zwei eindeutig lokalisierte H-Atome an den beiden Phosphor-Atomen in *trans*-Position. Die Molekülstrukturanalyse lieferte wegen $\approx 10\%$ Fehlordnung des P1-Atoms in diesem Molekülbereich keine zuverlässigen Werte für Abstände und Winkel (vgl. Abb. 2).

Weitere Daten sind aus den Tab. 7-9 zu entnehmen. Bei (4)₂ sind keine unerwarteten Größen der Bindungsparameter festzustellen. Die beobachteten Werte entsprechen denen von (1)₂.

Vereinfachte Darstellung der Atom-Anordnung in (4)2

Abb. 2. Röntgenographisch bestimmte Molekülstruktur von 1,5-Cyclooctandiyl(phenylphosphinoyloxy)boran (4)₂

Tab. 7. Daten zur Kristallstrukturanalyse von (4)2

$a = 10.752(2) \text{ \AA}$ $b = 18.491(1) \text{ \AA}$ $c = 14.096(7) \text{ \AA}$ $\alpha = 90.0^{\circ}$ $\beta = 90.0^{\circ}$ $\gamma = 90.0^{\circ}$ $V = 2802.499 \text{ \AA}^{3}$ $d_{c} = 1.24 \text{ gcm}^{-3}$ Z = 4	Raumgruppe Pnma (Nr. 62) Gesamtzahl Reflexe 2567 davon beobachtet 1999 ($I > 2\sigma(I)$) verfeinerte Parameter 175 R = 0.070 $R_w = 0.087$ Wellenlänge = 1.5418Å	

Abgesehen vom Einfluß der P- und B-Substituenten auf die Bildung der (POBO)₂-Molekülstrukturen (1)₂ und (4)₂ (anomerer Effekt) ist zu vermerken, daß aus dem achiralen Monomeren 1 eine chirale Struktur des Dimeren (1)₂ mit der Punktsymmetrie C_2 resultiert und daß aus dem chiralen monomeren Molekül 4 ein achirales Dimeres (4)₂ mit C_s -Symmetrie entsteht (Abb. 3).

2870

Dimeres von 1 in der (POBO)2-Wannenform

trans-Dimeres von 4 in der (POBO)₂-Halbsesselform

Abb. 3. Gegenüberstellung der Molekülstrukturen von (Diphenylphosphinoyloxy)diethylboran (1)₂ und 1,5-Cyclooctandiyl(phenylphosphinoyloxy)boran (4)₂ (ohne Substituenten an den Bor-Atomen)

Bindungsabständ	e in Å		
P1 - 01 1	.454(4)	С5 - В	.575(7)
P1 - HP1 1	.228(1)	B - 02 1.	.562(5)
01 - B 1	.543(6)	02 - P2 1.	.518(3)
B - C1 1	.583(6)	P2 - HP2 1.	128(1)
C1 - C2 1	.529(6)	P2 - C13 1.	782(5)
C2 - C3 1	.530(7)	C13 - C14 1.	368(5)
C3 - C4 1	.525(7)	C14 - C15 1.	385(7)
C4 - C5 1	.522(6)	C15 - C16 1.	362(6)
C5 - C6 1	.540(7)	P1 - C9 1.	788(5)
C6 - C7 1	.529(8)	C9 - C10 1.	386(4)
C7 - C8 1	.515(8)	C10 - C11 1.	368(6)
C8 - C1 1	.554(7)	C11 - C12 1.	362(5)
Bindungswinkel	in ⁰		
P1 - C9 - C10	120.5(2)	C8 - C1 - B	108.0(4)
C9 - C10 - C11	120.1(4)	C1 - B - C5	109.0(4)
C10 - C11 - C12	120.2(4)	B - C5 - C4	108.9(3)
C11 - C12 - C11	120.4(5)	B - C5 - C6	108.7(4)
C10 - C9 - C10*	118.8(4)	C5 - B - O1	109.6(3)
C9 - P1 - HP1	120.0(2)	C5 - B - O2	110.3(3)
C9 - P1 - O1	107.8(1)	C1 - B - O2	113.0(3)
HP1 - P1 - O1	101.1(1)	01 - B - 02	104.0(3)
P1 - O1 - B	142.6(3)	B - O2 - P2	131.0(2)
01 - B - C1	110.9(3)	02 - P2 - HP2	110.1(1)
B - C1 - C2	109.2(3)	02 - P2 - C13	108.2(1)
C1 - C2 - C3	116.0(4)	HP2 - P2 - C13	104.5(2)
C2 - C3 - C4	114.8(4)	P2 - C13 - C14	120.4(2)
C3 - C4 - C5	115.0(4)	C13 - C14 - C15	120.2(4)
C4 - C5 - C6	113.5(4)	C14 - C15 - C16	120.5(5)
C5 - C6 - C7	114.E(4)	C15 - C16 - C15*	119.3(5)
C6 - C7 - C8	115.2(5)	C14 - C13 - C14*	119.2(5)
C7 - C8 - C1	114.0(4)	02 - P2 - 02*	115.1(2)
C8 - C1 - C2	112.3(4)	01 - P1 - 01*	119.8(3)

Tab. 8. Bindungsabstände und -winkel in (4)2

ATOM	X	Ŷ	2	U(1,1)	U(2,2)	U(3,3)	U(1,2)	U(1,3)	U(2,3)
P1	0.0801(1)	0.2500	0.4922(1)	0.044	0.058	0.034	0.000	0.006	0.000
P2	0.2383(1)	0.2500	0.2655(1)	0.045	0.078	0.036	0.000	0.000	0.000
01	0.1442(4)	0.1820(2)	0.4751(2)	0.213	0.111	0.060	0.099	0.060	0.025
02	0.1819(2)	0.1807(1)	0.3041(1)	0.055	0.078	0.044	0.002	0.002	0.011
В	0.2093(4)	0.1376(2)	0.3969(2)	0.070	0.077	0.034	0.023	0.009	0.005
C1	0.3532(4)	0.1297(2)	0.4182(2)	0.078	0.069	0.057	0.009	-0.021	-0.014
C2	0.4144(3)	0.0862(2)	0.3387(3)	0.046	0.108	0.086	0.015	0.011	-0.002
C3	0.3502(4)	0.0152(2)	0.3120(3)	0.091	C.080	0.064	0.018	0.016	-0.012
C4	0.2086(4)	0.0187(2)	0.3096(3)	0.100	C.078	0.061	-0.011	-0.017	0.003
C5	0.1494(3)	0.0600(2)	0.3913(3)	0.053	0.091	0.068	0.013	0.009	0.027
C6	0.1652(4)	0.0225(2)	0.4881(3)	0.097	0.100	0.078	0.043	0.037	0.034
C7	0.2984(5)	0.0219(3)	0.5258(3)	0.136	0.102	0.048	0.033	-0.008	0.014
C8	0.3679(5)	0.0928(3)	0.5166(3)	0.136	0.108	0.062	0.041	-0.048	-0.018
C9	0.0283(4)	0.2500	0.6127(3)	0.061	0.063	0.039	0.000	0.008	0.000
C10	0.0037(5)	0.1855(2)	0.6591(3)	0.123	0.060	0.052	0.001	0.030	0.001
C11	-0.0433(5)	0.1861(2)	0.7492(3)	0.153	0.073	0.050	-0.010	0.037	0.003
C12	-0.0683(7)	0.2500	0.7932(4)	0.128	0.104	0.043	0.000	0.031	0.000
C13	0.2202(4)	0.2500	0.1398(3)	0.054	0.067	0.039	0.000	0.004	0.000
C14	0.2164(5)	0.1862(2)	0.0908(3)	0.159	0.073	0.048	-0.045	0.006	0.001
C15	0.2113(6)	0.1865(3)	-0.0073(3)	0.161	0.116	0.047	-0.076	0.000	-0.012
C16	0.2071(6)	0.2500	-0.0560(4)	0.091	0.132	0.037	0.000	0.002	0.000
P1A	0.156(2)	0.2500	0.517(1)	0.058					

Tab. 9. Atomkoordinaten und thermische Parameter von (4)2

Zusammenfassung

Die in der voranstehenden Arbeit¹⁾ erzielten Ergebnisse der kryoskopischen Molmasse-Bestimmungen sowie der Auswertung der IR- und Massenspektren ergaben bereits deutliche Hinweise auf Assoziationen der Diorgano(phosphinoyloxy)borane 1 – 4. Die in der vorliegenden Arbeit mitgeteilten NMR-Daten bestätigen die Assoziationstendenz von 1 – 4. Dabei weist lediglich das von der benzolischen Lösung aufgenommene ¹¹B-NMR-Spektrum von 1 auf ein Monomeren/Dimeren-Gleichgewicht hin. Aufgrund der ¹H-, ¹³C- und ³¹P-NMR-Daten treten die beiden Diorgano(monophenylphosphinoyloxy)borane (3)₂ und (4)₂ in Lösung als im Gleichgewicht stehende Isomere auf. Aus den NMR-spektroskopischen Messungen kann somit in Abhängigkeit von den *B*- und *P*-Substituenten auf ein Monomeren/Dimeren-Gleichgewicht und ein Dimeren/Dimeren-Gleichgewicht geschlossen werden. Der (POBO)₂-Achtring tritt bei (3)₂ und (4)₂ in *cis/trans*-Isomeren auf. Die Stabilität des Achtrings ist aufgrund des ¹¹B-NMR-Spektrums bei (2)₂ größer als bei (1)₂ sowie aufgrund der ¹H-, ¹³C- und ³¹C-NMR-Spektren bei (4)₂ größer als bei (3)₂. Somit wird die Assoziationsenergie im Achtring durch den bifunktionellen, am Bor-Atom gebundenen 1,5-Cyclooctandiyl-Rest im Vergleich zu

Chem. Ber. 117 (1984)

zwei *B*-Ethyl-Resten erhöht. Für die dimeren Verbindungen 1-4 ergibt sich somit die Stabilitätsreihe $(1)_2 < (2)_2 \approx (3)_2 < (4)_2$.

Die Röntgenstrukturanalysen der Verbindungen $(1)_2$ (Abb. 1) und $(4)_2$ (Abb. 2) bestätigen die NMR-Deutungen auch für den festen Zustand. Im Kristall von $(4)_2$ liegt allerdings nur das (thermodynamisch) stabilere *trans*-Isomere vor (Abb. 2).

In Lösung besteht $(4)_2$ aber aus einem *trans/cis*-Gemisch im Verhältnis 3:1 (vgl. NMR-Daten in Tab. 1-3). Die Isomerisierung des *trans*-Isomeren von $(4)_2$ bzw. auch von $(3)_2$ wird vermutlich durch Dissoziation in die enantiomeren Monomeren eingeleitet und durch deren anschließende Rekombination verursacht. Dabei kann auch ein nichtchiraler POBO-Vierring als Zwischenverbindung eine Rolle spielen.

Experimenteller Teil

¹H-NMR-Spektren²⁾: Varian EM 360A, Bruker WP 80 oder WH 400, Tetramethylsilan als innerer Standard, $\delta = 0$. – ¹¹B-NMR-Spektren²⁾: Varian FT-NMR-Spektrometer XL 100-15 bei 32.1 MHz, (C₂H₅)₂O – BF₃ externer Standard. – ¹³C-NMR-Spektren²⁾: Bruker WP 80 bei 20.12 MHz, Tetramethylsilan als innerer Standard. – ³¹P-NMR-Spektren²⁾: Bruker WP 80 bei 32.37 MHz, 85proz. Phosphorsäure als externer Standard.

Die Verbindungen $(1)_2 - (4)_2$ sind voranstehend ¹⁾ beschrieben. Ihre Reinigung erfolgte durch Umkristallisieren: (Diphenylphosphinoyloxy)diethylboran (1), Schmp. 171 °C (aus Chloroform). – 1,5-Cyclooctandiyl(diphenylphosphinoyloxy)boran (2), Schmp. 274 °C (aus Chloroform). – Diethyl(phenylphosphinoyloxy)boran (3), Schmp. 79 °C (aus Pentan). – 1,5-Cyclooctandiyl(phenylphosphinoyloxy)boran (4), Schmp. 194 °C (aus Benzol).

NMR-Proben: $(1)_2 - (4)_2$ wurden unter Argon in getrocknetem $[D_6]$ Benzol, $[D_8]$ Toluol, [D]Chloroform oder $[D_5]$ Pyridin gelöst, die Lösungen in die Proberöhrchen eingefüllt und diese abgeschmolzen.

Proben von $(1)_2$ und $(4)_2$ für die Röntgenstrukturanalyse: Man kristallisierte zweimal aus trockenem Chloroform um und entfernte das Lösungsmittel durch 12 h Evakuieren bei 20°C/ 0.001 Torr quantitativ. Diese Maßnahme ist wichtig, da andernfalls Chloroform-Moleküle im Kristallgitter eingebaut bleiben. $(1)_2$ wurde, wie aus Abb. 4 zu entnehmen ist, auch aus einem Kristall mit eingelagertem, fehlgeordnetem Chloroform (1:1) bestimmt.

Abb. 4. Packungsdiagramm von $(1)_2$ mit eingelagertem fehlgeordnetem Chloroform (1:1)

Chem. Ber. 117 (1984)

- ¹⁾ 62. Mitteilung über Borverbindungen; 61. Mitteil.: R. Köster und L. Synoradzki, Chem. Ber. 117, 2850 (1984), voranstehend.
- ²⁾ NMR-Daten: Dr. R. Benn zusammen mit Dr. R. Mynott, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr.
- ³⁾ Röntgenstrukturanalysen (1981/1982): Weitere Angaben zur Kristallstrukturanalyse können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50643, des Autors und des Zeitschriftenzitates angefordert werden. - Jetzige Adresse von Mr. Jiang Anbei (XIAMEN DAXUE) Xiamen University, Xiamen, Fujian, China.
- ⁴⁾ H. Noth und B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, S. 86, 361, 369f., Springer Verlag, Berlin, Heidelberg, New York 1978. ⁵⁾ M. M. Crutchfield, C. H. Dungan, J. H. Letcher, V. Mark und J. R. van Wazer, ³¹P Nuclear
- Magnetic Resonance, Interscience Publishers, New York 1967.
- 6) Elementaranalysen vgl. Lit.¹⁾.

[358/83]